मेनू टॉगल करें
Toggle personal menu
लॉग-इन नहीं किया है
Your IP address will be publicly visible if you make any edits.

कलन

भारतपीडिया से
WikiDwarf (वार्ता | योगदान) द्वारा परिवर्तित ०८:२६, २ सितम्बर २०२० का अवतरण (नया लेख बनाया गया)
(अंतर) ← पुराना अवतरण | वर्तमान अवतरण (अंतर) | नया अवतरण → (अंतर)

साँचा:कलन कलन (Calculus) गणित का प्रमुख क्षेत्र है जिसमें राशियों के परिवर्तन का गणितीय अध्ययन किया जाता है। इसकी दो मुख्य शाखाएँ हैं- अवकल गणित (डिफरेंशियल कैल्कुलस) तथा समाकलन गणित (इटीग्रल कैलकुलस)। कैलकुलस के ये दोनों शाखाएँ कलन के मूलभूत प्रमेय द्वारा परस्पर सम्बन्धित हैं। वर्तमान समय में विज्ञान, इंजीनियरी, अर्थशास्त्र आदि के क्षेत्र में कैल्कुलस का उपयोग किया जाता है।

भारत में कैल्कुलस से सम्बन्धित कई कॉन्सेप्ट १४वीं शताब्दी में ही विकसित हो गये थे।[१][२] किन्तु परम्परागत रूप से यही मान्यता है कि कैलकुलस का प्रयोग 17वीं शताब्दी के उत्तरार्ध में आरंभ हुआ तथा आइजक न्यूटन तथा लैब्नीज इसके जनक थे।

समाकलन

समाकलन को किसी वक्र f(x), x-अक्ष, x=a तथा x=b के बीच के क्षेत्रफल के मापन के रूप में समझा जा सकता है।

समाकलन(Integral Calculus) यह एक विशेष प्रकार की योग क्रिया है जिसमें अति-सूक्ष्म मान वाली (किन्तु गिनती में अत्यधिक, अनन्त) संख्याओं को जोड़ा जाता है। किसी वक्र तथा x-अक्ष के बीच का क्षेत्रफल निकालने के लिये समाकलन का प्रयोग करना पड़ता है।

अवकलन

अवकलन(Differential Calculus) किसी एक राशि का किसी अन्य राशि के सापेक्ष तात्कालिक बदलाव की दर का अध्ययन करता है। इस दर को 'अवकलज' (en:Derivative) कहते हैं।

किसी फलन के किसी चर राशि के साथ बढ़ने की दर को मापता है। जैसे यदि कोई फलन y किसी चर रासि x पर निर्भर है और x का मान x1 से x2 करने पर y का मान y1 से y2 हो जाता है तो (y2 - y1)/(x2 - x1) को y का x के सन्दर्भ में अवकलज कहते हैं। इसे dy/dx से निरूपित किया जाता है। ध्यान रहे कि परिवर्तन (x2 - x1) सूक्ष्म से सूक्ष्मतम (tend to zero) होना चाहिये। इसी लिये सीमा (limit) का अवकलन में बहुत महत्वपूर्ण स्थान है। किसी वक्र (curve) का किसी बिन्दु पर प्रवणता (slope) जानने के लिये उस बिन्दु पर अवकलज की गणना करनी पड़ती है।

अर्थात्

<math>\lim_{h \to 0}{f(a+h) - f(a)\over{h}}.</math>

माना साँचा:Math एक फलन है जिसका अवकल नीचे दिखाया गया है-

उदाहरण
<math>\begin{align}f'(3) &=\lim_{h \to 0}{(3+h)^2 - 3^2\over{h}} \\

&=\lim_{h \to 0}{9 + 6h + h^2 - 9\over{h}} \\ &=\lim_{h \to 0}{6h + h^2\over{h}} \\ &=\lim_{h \to 0} (6 + h) \\ &= 6. \end{align} </math>

इतिहास

साँचा:Main कैलकुलस के विकास का मुख्य श्रेय लैब्नीज (Leibniz) और आइजक न्यूटन को दिया जाता है। किन्तु इसकी जड़ें बहुत पुरानी हैं।

भारत के केरल के महान गणितज्ञ माधव ने चौदहवीं शताब्दी में कैलकुलस के कई महत्वपूर्ण अवयवों की चर्चा की और इस प्रकार कैलकुलस की नींव रखी। उन्होने टेलर श्रेणी, अनन्त श्रेणियों का सन्निकटीकरण (infinite series approximations), अभिसरण (कन्वर्जेंस) का इन्टीग्रल टेस्ट, अवकलन का आरम्भिक रूप, अरैखिक समीकरणों के हल का पुनरावर्ती (इटरेटिव) हल, यह विचार कि किसी वक्र का क्षेत्रफल उसका समाकलन होता है, आदि विचार (संकल्पनाएं) उन्होने बहुत पहले लिख दिया।[३][४][५][६]

फर्मा तथा जापानी गणितज्ञ सेकी कोवा ने भी इसमें योगदान दिया।

कैल्कुलस के विकास में भारत का योगदान

केरलीय गणित सम्प्रदाय भी देखें।

चंद्र ग्रहण का एक सटीक मानचित्र विकसित करने के दौरान आर्यभट्ट को इनफाइनाटसिमल की परिकल्पना प्रस्तुत करना पड़ी, अर्थात् चंद्रमा की अति सूक्ष्मकालीन या लगभग तात्कालिक गति को समझने के लिए असीमित रूप से सूक्ष्म संख्याओं की परिकल्पना करके उन्होंने उसे एक मौलिक अवकल समीकरण के रूप में प्रस्तुत किया। आर्यभट्ट के समीकरणों की 10वीं सदी में मंजुला ने और 12वीं सदी में भास्कराचार्य ने विस्तारपूर्वक व्याख्या की। भास्कराचार्य ने ज्या फलन के अवकलज (डिफरेंशल) का मान निकाला। परवर्ती गणितज्ञों ने समाकलन (इंटिग्रेशन) की अपनी विलक्षण समझ का उपयोग करके वक्र तलों के क्षेत्रफल और वक्र तलों द्वारा घिरे आयतन का मान निकाला।

आधारभूत संकल्पनाएं (concepts)

फलन, सीमा, सातत्य, श्रेणी का अनन्त तक योग, अत्यणु (infinitesimal) आदि संकल्पनाओं की समझ और विकास ने कैलकुलस को जन्म दिया।

कलन का मूलभूत प्रमेय

'समाकलन और अवकलन एक दूसरे के व्युत्क्रम क्रियायें हैं'। इस कथन की पुष्टि करने वाले दो प्रमेयों को कलन का मूलभूत प्रमेय कहा जाता है। इन प्रमेयों की‌ खोज न्यूटन तथा लेइब्नित्ज़ ने की थी।

उपयोग

कैलकुलस का उपयोग सभी भौतिक विज्ञानों, इंजीनियरी, संगणक विज्ञान, सांख्यिकी, अर्थशास्त्र, वाणिज्य, आयुर्विज्ञान, एवं अन्यान्य क्षेत्रों में होता है। जहाँ भी किसी डिजाइन समस्या का गणितीय मॉडल बनाया जा सकता हो और इष्टतम (optimal) हल प्राप्त करना हो, कलन का उपयोग किया जाता है। कलन की सहायता से हम परिवर्तन के अनियत चर दरों (non-constant rates) को भी लेकर आसानी से आगे बढ़ पाते हैं।

सन्दर्भ

साँचा:टिप्पणीसूची

इन्हें भी देखें

बाहरी कड़ियाँ