मेनू टॉगल करें
Toggle personal menu
लॉग-इन नहीं किया है
Your IP address will be publicly visible if you make any edits.

भौतिकी के सूत्र

भारतपीडिया से

एसआई उपसर्ग (प्रीफिक्स)

साँचा:SI prefixes

आधारभूत यांत्रिकी (Fundamentals of Mechanics)

Foundational equations in translation and rotation.

Quantity Translation Rotation
समय <math>t</math> <math>t</math>
स्थिति <math>x </math> <math>\theta </math> in radians
द्रव्यमान <math>m</math> <math>m</math>
समयान्तर <math>\Delta t</math> <math>\Delta t</math>
विस्थापन <math>\Delta x</math> <math>\Delta \theta</math>
द्रव्यमान संरक्षण <math>\Delta m = 0 </math> <math>\Delta m = 0 </math>
ऊर्जा संरक्षण <math>\Delta E = 0 </math> <math>\Delta E = 0 </math>
संवेग संरक्षण <math>\Delta P = 0 </math> <math>\Delta L = 0 </math>
वेग <math> v = dx/dt </math> <math>\omega = d\theta/dt </math>
त्वरण <math> a = dv/dt </math> <math>\alpha = d\omega/dt </math>
झटका <math>j = da/dt </math> <math>j = d\alpha/dt </math>
स्थितिज ऊर्जा परिवर्तन <math>\Delta U = -W</math> <math>\Delta U = -W</math>
संवेग <math>P = mv </math> <math>L = I\omega </math> <math> = \mathbf{r} \times \mathbf{P} = m \mathbf{r} \times \mathbf{v} </math>
बल <math>f = dP/dt = ma = -dU/dx </math> <math>\tau = dL/dt = I\alpha </math> <math> = \mathbf{r} \times \mathbf{f} =m \mathbf{r} \times \mathbf{a} </math>
जड़त्व आघूर्ण <math>m = \int dm = \Sigma m_i</math> <math>I = \int r^2 dm = \Sigma r^2m_i</math>
आवेग <math>J=\int f dt</math> <math>J=\int \tau dt</math>
कार्य <math>W = \int f dx = \mathbf{d} \cdot \mathbf{f}</math> <math>W = \int \tau d\theta </math>
शक्ति <math> P = dW/dt = fv </math> <math> P = dW/dt = \tau\omega</math>
गतिज ऊर्जा <math>K = mv^2/2 = P^2/2m </math> <math>K = I \ w^2 / 2 = \Sigma R^2m</math>
न्यूटन का तीसरा नियम <math> f_{ab} = - f_{ba} </math> <math>\tau_{ab} = -\tau_{ba} </math>

Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:

  • Wherever the force is zero, its potential energy is defined to be zero as well.
  • Whenever the force does work, potential energy is lost.

स्थिर त्वरण (Constant acceleration)

Equations in translation and rotation, assuming constant acceleration.

भौतिक राशि रेखीय गति घुर्णन गति
विस्थापन <math>\Delta v = at</math> <math>\Delta \omega = \alpha t</math>
समय <math>\Delta(v^2) = 2a\Delta x</math> <math>\Delta(\omega^2) = 2\alpha\Delta \theta</math>
त्वरण <math>\Delta x = t\Delta v/2</math> <math>\Delta \theta = t\Delta \omega/2</math>
प्रा०वेग <math>\Delta x = -at^2/2 + v_2t</math> <math>\Delta \theta = -\alpha t^2/2 + \omega_2t</math>
अंतिमवेग <math>\Delta x = +at^2/2 + v_1t</math> <math>\Delta \theta = +\alpha t^2/2 + \omega_1t</math>

एकसमान वृत्तीय गति (Uniform circular motion)

uniform circular motion angular to linear displacement <math>x = \theta r</math>
uniform circular motion angular to linear speed <math>v = \theta \omega</math>
uniform circular motion angular to linear acceleration normal component <math>a_r = \omega^2r</math>
uniform circular motion <math>\mathbf{d} = \mathbf{i}cos\omega t + \mathbf{j}sin\omega t</math>
uniform circular motion tangential speed <math>\mathbf{v} = \mathbf{d}' = -\omega r (\mathbf{i}\sin\omega t - \mathbf{j}\cos\omega t)</math>
uniform circular motion tangential component, scalar <math>a_t = \alpha r</math>
uniform circular motion centripetal acceleration <math>\mathbf{a} = \mathbf{d} = -\omega^2\mathbf{d} = -v^2\mathbf{n}/r</math>
uniform circular motion centripetal acceleration scalar <math>\alpha=v^2/r</math>
uniform circular motion centripetal force <math>f = -mv^2/r</math>
uniform circular motion revolution time <math>T=2\pi r/v</math>

Elasticity

elastic force, lies parallel to spring <math>f = -kd</math>
elastic potential energy <math>U=kx^2/2</math>
elastic work, positive when relaxes <math>W = -k\Delta(x^2)/2</math>

घर्षण (Friction)

normal force <math>f_n = \mathbf{f}\cdot\mathbf{n}</math>
static friction maximum, lies tangent to the surface <math>f=\mu_sf_n</math>
kinetic friction, lies tangent to the surface <math>f=\mu_kf_n</math>
drag force, tangent to the path <math>f =\mu_d\rho a v^2/2</math>
terminal velocity <math>v_t=\sqrt{2fg/(\mu_d\rho A)}</math>
friction creates heat and sound <math>\Delta E = f_kd</math>

प्रतिबाधा एवं विकृत्ति (Stress and strain)

stress <math></math>
strain <math></math>
modulus of elasticity <math>\lambda = {stress}/{strain}</math>
yield strength <math></math>
ultimate strength <math></math>
Young's modulus <math>F/A = E\Delta L/L</math>
shear modulus <math>F/A = G\Delta x/L</math>
bulk modulus <math>F/A = B\Delta V/V</math>

अन्य

inertial frames <math>x_{PA} = x_{PB} + x_{AB}</math>
. . . <math>v_{PA} = v_{PB} + v_{AB}</math>
. . . <math>a_{PA} = a_{PB} + 0</math>
trajectory <math>y=x\tan\theta-gx^2/2(V_0\cos\theta)^2</math>
flight distance <math>v_0^2\sin{2\theta}/g</math>
tension, lies within the cord <math>f_t = f</math>
mechanical energy <math> E_{mec}=K + U</math>
mechanical energy is conserved <math> \Delta E_{mec} = 0</math> when all forces are conservative
thrust <math>t = Rv_{rel}=ma</math>
ideal rocket equation <math>\Delta v = ln(m_i/m_f)v_{rel}</math>
parallel axis theorem <math>I = I_{com} + mr^2</math>
list of moments of inertia
indeterminate systems

द्रब्यमान केन्द्र एवं संघट्ट (Center of mass and collisions)

center of mass COM <math>\mathbf{r}_{com}=M^{-1}\Sigma m_i \mathbf{r}_i</math>
. . . <math>x_{com}=M^{-1}\int x dm, \cdots</math>
for constant density: <math>x_{com}=V^{-1}\int x dV, \cdots</math>
COM is in all planes of symmetry <math></math>
elastic collision <math>\Delta E_k = 0</math>
inelastic collision <math>\Delta E_k = </math>maximum
conservation of momentum in a two body collision <math>\mathbf{P}_{1i}+\mathbf{P}_{2i}=\mathbf{P}_{1f}+\mathbf{P}_{2f} </math>
system COM remains inert <math>\mathbf{v}_{com}={(\mathbf{P}_{1i}+\mathbf{P}_{2i})\over(M_1+M_2)} = const</math>
elastic collision, 1D, M2 stationary <math>v_{1f}={(m_1 - m_2)\over(m_1 + m_2)}v_{1i}</math>
. . . <math>v_{2f}={(2m_1)\over(m_1 + m_2)}v_{1i}</math>

चिकने तल पर लुढ़कना (Smooth rolling)

rolling distance <math>x_{arc}=R\theta</math>
rolling distance ? <math>x_{com}=R\alpha</math>
rolling velocity <math>v_{com}=R\omega</math>
rolling ? <math>K = I_{com}\omega^2/2 + Mv^2_{com}/2</math>
rolling down a ramp along axis x <math>a_{com,x}=-\frac{g\sin\theta}{1+I_{com}/MR^2}</math>

उष्मागतिकी (Thermodynamics)

Zeroth Law of Thermodynamics <math>(A = B) \land (B=C) \Rightarrow A=C</math>
(where "=" denotes systems in thermal equilibrium
First Law of Thermodynamics <math>\Delta E_{int} = Q + W</math>
Second Law of Thermodynamics <math>\Delta S \ge 0</math>
Third Law of Thermodynamics <math>S = S_{structural} + CT</math>
temperature <math>T</math>
molecules <math>N</math>
degrees of freedom <math>f</math>
heat <math>Q</math>, <math>\Delta E</math> due to <math>\Delta T</math> (energy)
thermal mass (extensive property) <math>C_{th} = Q/\Delta T</math>
specific heat capacity (bulk property) <math>c_{th} = Q/\Delta Tm</math>
enthalpy of vaporization <math>L_v = Q/m</math>
enthalpy of fusion <math>L_f = Q/m</math>
thermal conductivity <math>\kappa</math>
thermal resistance <math>R=L/ \kappa</math>
thermal conduction rate <math>P = Q/t = A(T_H - T_C)/R</math>
thermal conduction rate through a composite slab <math>P = Q/t = A(T_H - T_C)/\Sigma(R_i)</math>
linear coefficient of thermal expansion <math> dL/dt = \alpha L</math>
volume coefficient of thermal expansion <math>dV/dt = 3 \alpha V </math>
Boltzmann constant <math>k</math> (energy)/(temperature)
Stefan-Boltzmann constant <math>\sigma</math> (power)/(area)(temp)^4
thermal radiation <math>P = \sigma \epsilon A T ^4_{sys}</math>
thermal absorption <math>P = \sigma \epsilon A T ^4_{env}</math>
adiabatic <math>\Delta Q = 0 </math>
ideal gas law <math>PV = kTN</math>
work, constant temperature <math>W=kTNln(V_f/V_i)</math>
work due to gas expansion <math>W = \int_{i}^{f}pdV</math>
. . . adiabatic <math>\Delta E_{int} = W</math>
. . . constant volume <math>\Delta E_{int} = Q</math>
. . . free expansion <math>\Delta E_{int} = 0</math>
. . . closed cycle <math>Q + W = 0</math>
work, constant volume <math>W=0</math>
work, constant pressure <math>W=p\Delta V</math>
translational energy <math>E_{k,avg} = kTf/2</math>
internal energy <math>E_{int} = NkTf/2</math>
mean speed <math>v_{avg}= \sqrt{(kT/m)(8/\pi)}</math>
mode speed <math>v_{prb} = \sqrt{(kT/m)2}</math>
root mean square speed <math>v_{rms} = \sqrt{(kT/m)3}</math>
mean free path <math>\lambda = 1/(\sqrt{2} \pi d^2 N / V)</math>?
Maxwell–Boltzmann distribution <math>P(v)=4\pi(m/(2\pi kT))^{3/2}V^2e^{-(mv^2/(2kT))}</math>
molecular specific heat at a constant volume <math>C_V = Q/(N\Delta T)</math>
? <math>\Delta E_{int} = NC_V \Delta T</math>
molecular specific heat at a constant pressure <math>C_p = Q/(N\Delta T)</math>
? <math>W = p \Delta V = Nk \Delta T</math>
? <math>k = C_p - C_V</math>
adiabatic expansion <math>pV^{\gamma} = constant</math>
adiabatic expansion <math>TV^{\gamma - 1} = constant</math>
multiplicity of configurations <math>W = N!/n_1!n_2!</math>
microstate in one half of the box <math>n_1, n_2</math>
Boltzmann's entropy equation <math>S = klnW</math>
irreversibility <math></math>
entropy <math>S = - k\sum_i P_i \ln P_i \!</math>
entropy change <math>\Delta S = \int_i^f(1/T)dQ \approx Q/T_{avg}</math>
entropy change <math>\Delta S = kNln(V_f/V_i) + NC_Vln(T_f/T_i)</math>
entropic force <math>f = -TdS/dx</math>
engine efficiency W|/|Q_H|</math>
Carnot engine efficiency Q_H|-|Q_L|)/|Q_H| = (T_H-T_L)/T_H</math>
refrigeration performance Q_L|/|W|</math>
Carnot refrigeration performance Q_L|/(|Q_H|-|Q_L|) = T_L/(T_H-T_L)</math>

तरंग

torsion constant <math>\kappa = -\tau / \theta</math>
phasor <math></math>
node <math></math>
antinode <math></math>
period <math>T</math>
amplitude <math>x_m</math>
decibel <math>dB</math>
frequency <math>f = 1/T = \omega /(2\pi)</math>
angular frequency <math>\omega = 2\pi f = 2\pi / T</math>
phase angle <math>\phi</math>
phase <math>(\omega t + \phi)</math>
damping force <math>f_d = -bv</math>
phase <math>ky -\omega t</math>
wavenumber <math>k</math>
phase constant <math>\phi</math>
linear density <math>\mu</math>
harmonic number <math>n</math>
harmonic series <math>f = v/\lambda = nv/(2L) </math>
wavelength <math>\lambda = k/(2\pi)</math>
bulk modulus <math>B = \Delta p /(\Delta V / V)</math>
path length difference <math>\Delta L</math>
resonance <math>\omega_d = \omega</math>
phase difference <math>\phi = 2 \pi \Delta L / \lambda </math>
fully constructive interference <math>\Delta L/\lambda = n</math>
fully destructive interference <math>\Delta L/\lambda = n+0.5</math>
sound intensity <math>I = P/A = \rho v \omega^2 s^2_m/2</math>
sound power source <math>P_s</math>
sound intensity over distance <math>I = P_s/(4\pi r^2)</math>
sound intensity standard reference <math>I_0</math>
sound level <math>\Beta = (10 dB)log(I/I_0)</math>
pipe, two open ends <math>f=v/\lambda = nv/(2L)</math>
pipe, one open end <math>f = v/\lambda = nv/(4L)</math> for n odd
beats <math>s(t) = [2s_m\cos\omega ' t ] \cos \omega t</math>
beat frequency <math>f_{beat} = f_1 - f_2</math>
Doppler effect <math>f' = f(v+-v_D)/(v+-v_S)</math>
sonic boom angle <math>\sin \theta = v/v_s</math>
average wave power <math>P_{avg}=\mu v \omega^2 x_m^2/2</math>
pressure amplitude <math>\Delta p_m = (v\rho \omega)x_m</math>
wave equation <math>\frac{\partial y}{\partial x^2} = \frac{1}{v^2} \frac{\partial ^2 y}{\partial t^2}</math>
wave superposition <math>x'(y,t) = x_1(y,t) + x_2(y,t)</math>
wave speed <math>v = \omega/k = \lambda/T = \lambda f</math>
speed of sound <math>v = \sqrt{B/ \rho }</math>
wave speed on a stretched string <math>v=\sqrt{f_t/\mu}</math>
angular frequency of an angular simple harmonic oscillator <math>\omega = \sqrt{I/\kappa}</math>
angular frequency of a low amplitude simple pendulum <math>\omega = \sqrt{L/g}</math>
angular frequency of a low amplitude physical pendulum <math>\omega = \sqrt{I/mgh}</math>
angular frequency of a linear simple harmonic oscillator <math>\omega = \sqrt{k/m} </math>
angular frequency of a linear damped harmonic oscillator <math>\omega ' = \sqrt{(k/m)-(b^2/4m^2)}</math>
wave displacement <math>x(t)=x_m\cos(\omega t + \phi)</math>
wave displacement when damped <math>x(t)=x_m\cos(\omega 't+\phi)(e^{-bt/2m})</math>
wave velocity <math>v(t)=x_m\sin(\omega t + \phi)(- \omega)</math>
wave acceleration <math>a(t)=x_m\cos(\omega t + \phi)(- \omega^2 )</math>
transverse wave <math>x(y,t) = x_m\sin(ky-\omega t)</math>
wave traveling backwards <math>x(y,t) = x_m\sin(ky+\omega t)</math>
resultant wave <math>x'(y,t) = x_m\sin(ky-\omega t + \phi/2)(2\cos\phi/2)</math>
standing wave <math>x'(y,t) = \cos(\omega t)(2y\sin ky)</math>
sound displacement function <math>x(y,t) = x_m\cos(ky-\omega t)</math>
sound pressure-variation function <math>\Delta p(y,t) = \sin(ky-\omega t)\Delta p_m</math>
potential harmonic energy <math>E_U(t) = kx^2/2 = kx_m^2\cos^2(\omega t + \phi)/2</math>
kinetic harmonic energy <math>E_K(t) = kx^2/2 = kx_m^2\sin^2(\omega t + \phi)/2</math>
total harmonic energy <math>E(t) = kx_m^2/2 = E_U + E_K</math>
damped mechanical energy <math>E_{mec}(t) = ke^{-bt/m}x^2_m/2</math>

गुरुत्वाकर्षण (Gravitation)

gravitational constant <math>G</math> (force)(distance/mass)^2
gravitational force <math>f_G = Gm_1m_2/r^2</math>
superposition applies <math>\mathbf{F} = \Sigma \mathbf{F}_i = \int d\mathbf{F}</math>
gravitational acceleration <math>a_g = Gm/r^2</math>
free fall acceleration <math>a_f = a_g - \omega^2R</math>
shell theorem for gravitation
potential energy from gravity <math>U = -Gm_1m_2/r \approx ma_gy</math>
escape speed <math>v = \sqrt{2Gm/r}</math>
Kepler's law 1 planets move in an ellipse, with the star at a focus
Kepler's law 2 <math>A = 0</math>
Kepler's law 3 <math>T^2 = (4\pi^2/Gm)r^3</math>
orbital energy <math>E = - Gm_1m_2/a2</math>
standard gravity <math> a_g = Gm_{Earth}/r_{Earth}^2 \approx 9.81m/s^2</math>
weight, points toward the center of gravity <math>f_g = -f_n = mg </math>
path independence <math>W_{ab,1}=W_{ab,2}=\cdots</math>
Einstein field equations <math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math>

तरलगतिकी (Fluid dynamics)

density <math>\rho = \Delta m / \Delta V</math>
pressure <math>p = \Delta F / \Delta A</math>
pressure difference <math>\Delta p = \rho g\Delta y</math>
pressure at depth <math>p = p_0 + \rho gh</math>
barometer versus manometer <math></math>
Pascal's principle <math></math>
Archimedes' Principle <math></math>
buoyant force <math>F_b = m_fg</math>
gravitational force when floating <math>F_g = F_b</math>
apparent weight <math>weight_{app} = weight - F_b</math>
ideal fluid <math></math>
equation of continuity <math>R_V = Av =</math> constant
Bernoulli's equation <math>p + \rho v^2/2 + \rho gy =</math> constant

विद्युतचुम्बकत्व (Electromagnetism)

Lorentz force <math>\mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B})</math>
Gauss' law <math>\oint\mathbf{E}\cdot d \mathbf{A} = \Phi_E = q_{enc}/\epsilon_0</math>
Gauss' law for magnetic fields <math>\oint \mathbf{B} \cdot d \mathbf{A} = \Phi_B = 0</math>
Faraday's law of induction <math>\oint\mathbf{E}\cdot d\mathbf{s} = -d\Phi_B/dt = -\mathcal{E}</math>
Ampere-maxwell law <math>\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0(i_{enc} + i_{d,enc})</math>
elementary charge <math>e</math>
electric charge <math>q = ne</math>
conservation of charge <math>\Delta q = 0</math>
linear charge density <math>\lambda = q/l^1</math>
surface charge density <math>\sigma = q/l^2</math>
volume charge density <math>\rho = q/l^3</math>
electric constant <math>\epsilon_0</math> (time)^2(charge)^2/(mass)(volume)
magnetic constant <math>\mu_0</math> (force)(time)^2/(charge)^2
Coulomb's law <math>F = q_1q_2/(4\pi\epsilon_0)r^2</math>
electric field <math>\mathbf{E} =\mathbf{F}/q</math>
electric field lines end at a negative charge
Gaussian surface <math>\mathbf{A}</math>
flux notation implies a normal unit vector <math>\cdot d \mathbf{A} \to \cdot \mathbf{n} d \mathbf{A}</math>
electric flux <math>\Phi_E = \oint\mathbf{E}\cdot d \mathbf{A}</math>
magnetic flux <math>\Phi_B = \int \mathbf{B}\cdot d\mathbf{A}</math>
magnetic flux given assumptions <math>\Phi_B = BA</math>
dielectric constant <math>\kappa \ge 1</math>
dielectric <math>\epsilon_0 \to \epsilon_0\kappa</math>
Gauss' law with dialectric <math>q_{enc} = \epsilon_0 \oint \kappa\mathbf{E}\cdot d \mathbf{A}</math>
Biot-Savart law <math> \mathbf{B} = \int\frac{\mu_0}{4\pi}\ \frac{(id\mathbf{s}) \times \mathbf{r}}{r^3},</math>
Lenz's law induced current always opposes its cause
inductance (with respect to time) <math>L=-\mathcal{E}/q</math>
inductance from coils <math>L=N\Phi_B/i</math>
inductance of a solenoid <math>L/l=\mu_0n^2A</math>
displacement current <math>i_d = \epsilon_0 d\Phi_E/dt</math>
displacement vector <math>\mathbf{d}</math>
electric dipole moment <math>\mathbf{p} = q\mathbf{d}</math>
electric dipole torque <math>\mathbf{\tau}=\mathbf{p}\times\mathbf{E}</math>
electric dipole potential energy <math>U = -\mathbf{p}\cdot\mathbf{E}</math>
magnetic dipole moment of a coil, magnitude only <math>\mu=iNA</math>
magnetic dipole moment torque <math>\mathbf{\tau}=\mathbf{\mu}\times\mathbf{B}</math>
magnetic dipole moment potential energy <math>U=-\mathbf{\mu}\cdot\mathbf{B}</math>
electric field accelerating a charged mass <math>a = qE/m</math>
electric field of a charged point <math>E = q / \epsilon_0 4 \pi r^2 \hat{r} </math>
electric field of a dipole moment <math>E = p / \epsilon_0 2 \pi z^3 </math>
electric field of a charged line <math>E = \lambda / \epsilon_0 2\pi r</math>
electric field of a charged ring <math>E = qz/\epsilon_04\pi(z^2 + R^2)^{3/2}</math>
electric field of a charged conducting surface <math>E = \sigma / \epsilon_0</math>
electric field of a charged non-conducting surface <math>E = \sigma /\epsilon_0 2</math>
electric field of a charged disk <math>E = \sigma (1 - z)/ \epsilon_0 2 \sqrt{z^2 + R^2}</math>
electric field outside spherical shell r>=R <math>E = q/\epsilon_0 4 \pi r^2</math>
electric field inside spherical shell r<R <math>E = 0</math>
electric field of uniform charge r<=R <math>E = qr/\epsilon_0 4 \pi R^3</math>
electric field energy density <math>u = \epsilon_0 E^2/2</math>
electric potential versus electric potential energy (energy)/(charge) versus (energy)
electric potential energy <math>U = - W_{\infty}</math>
electric potential <math>V = -W_{\infty}/q = U/q</math>
electric potential difference <math>\Delta V = -W/q = \Delta U/q</math>
electric potential from electric field <math>\Delta V = -\int_i^f \mathbf{E}\cdot d\mathbf{s}</math>
electric field from electric potential <math>\nabla V = -\mathbf{E}</math>
electric potential of a charged point <math>V = q/\epsilon_0 4 \pi r</math>
electric potential of a set of charged points <math>V = \Sigma V_i = (1/\epsilon_0 4 \pi) \Sigma q_i/r_i</math>
electric potential of a dipole <math>V = p\cos\theta/\epsilon_0 4 \pi r^2</math>
electric potential of continuous charge <math>V = \int dV = (1/\epsilon_0 4 \pi)\int dq/r</math>
electric potential energy of a pair of charged points <math>Vq_2 = U = W = q_1q_2/\epsilon_04\pi r</math>
capacitance <math>C = q/V</math> (charge)^2/(energy)
capacitance of parallel plates <math>C = \epsilon_0A/d</math>
capacitance of a cylinder <math>C = \epsilon_0 2 \pi L/\ln(b/a)</math>
capacitance of a sphere <math>C = \epsilon_0 4 \pi ba/(b-a)</math>
capacitance of an isolated sphere <math>C = \epsilon_0 4 \pi R</math>
capacitors in parallel <math>C_{eq}^{+1} = \Sigma C_i^{+1}</math>
capacitors in series <math>C_{eq}^{-1} = \Sigma C_i^{-1}</math>
capacitor potential energy <math>U=q^2/C2 = CV^2/2</math>
current <math>i = dq/dt</math>
drift speed <math>\mathbf{v}_d</math>
current density <math>\mathbf{J} = ne\mathbf{v}_d/m^3</math>
current density magnitude <math>J = i/A</math>
current density to get current <math>i = \int JdA</math>
resistance <math>R = V/i</math>
resistivity <math>\rho = \mathbf{E}/\mathbf{J}</math>
resistivity temperature coefficient <math>\alpha</math>
resistivity across temperature <math>\rho - \rho_0 = \rho_0\alpha(T-T_0)</math>
resistivity and resistance <math>R A = \rho L</math>
electrical conductivity <math>\sigma = 1/\rho = \mathbf{J}/\mathbf{E}</math>
resistor power dissipation <math>P = i^2R = V^2/R</math>
internal resistance <math>i = \mathcal{E}/(R+r)</math>
resistors in series <math>R_{eq}^{+1}=\Sigma R_i^{+1}</math>
resistors in parallel <math>R_{eq}^{-1} =\Sigma R_i^{-1}</math>
Kirchoff's current law <math>i_{in} = i_{out}</math>
Ohm's law <math>V=iR</math>
emf <math>\mathcal{E} = dW/dq = iR</math>
emf rules loop, resistance, emf
electrical power <math>P=iV</math>
emf power <math>P_{emf} = i\mathcal{E}</math>
electric potential difference across a real battery <math>p = \mathcal{E} - iR</math>
magnetic field force on a moving charge <math>\mathbf{F}_B = q\mathbf{v}\times\mathbf{B}</math>
magnetic field force on a current <math>\mathbf{F}_B=i\mathbf{L}\times\mathbf{B}</math>
Hall effect <math>n = Bi/Vle</math>
circulating charged particle q|vB=mv^2/r</math>
cyclotron resonance condition <math>f = f_{osc}</math>
magnetic field of a line <math>B = \mu_0i/2\pi R</math>
magnetic field of a ray <math>B=\mu_0i/4\pi R</math>
magnetic field at the center of a circular arc <math>B=\mu_0i\phi/4\pi R</math>
magnetic field of a solenoid <math>B=\mu_0in</math>
magnetic field of a toroid <math>B=\mu_0iN/2\pi r</math>
magnetic field of a current carrying coil <math>\mathbf{B}=\mu_0\mathbf{\mu}/2\pi z^3</math>
self induction of emf <math>\mathcal{E}_L = -Ldi/dt</math>
magnetic energy <math>U_B=Li^2/2</math>
magnetic energy density <math>u_B=B^2/2\mu_0</math>
mutual induction <math>\mathcal{E}_1=-Mdi_2/dt,\mathcal{E}_2=-Mdi_1/dt</math>
transformation of voltage <math>V_s N_p = V_p N_s</math>
transformation of current <math>I_s N_s = I_p N_p</math>
transformation of reistance <math>R_{eq} = (Np/Ns)^2R</math>
induced magnetic field inside a circular capacitor <math>B = (\mu_0i_d/2\pi R^2)r</math>
induced magnetic field outside a circular capacitor <math>B = \mu_0i_d/2\pi rr</math>
RC circuit ODE with respect to time <math>Rq' + C^{-1}q=\mathcal{E}</math>
RC circuit capacitive time constant <math>\tau = RC</math>
RC circuit charging a capacitor <math>q = C\mathcal{E}(1-e^{-t/RC})</math>
RL circuit ODE with respect to time <math>Li+Ri'=\mathcal{E}</math>
RL circuit time constant <math>\tau_L=L/R</math>
RL circuit rise of current <math>i = \mathcal{E}/R(1-e^{-t/\tau_L})</math>
RL circuit decay of current <math>i=\mathcal{E}e^{-t/\tau_L}/R=i_0e^{-t/\tau_L}</math>
LC circuit ODE with respect to time <math>Lq+C^{-1}q = \mathcal{E}</math>
LC circuit <math>\omega = 1/\sqrt{LC}</math>
LC circuit charge <math>q = Qcos(\omega t + \phi)</math>
LC circuit current <math>i=-\omega Q sin(\omega t + \phi)</math>
LC circuit electrical potential energy <math>U_E=q^2/2C=Q^2cos^2(\omega t + \phi)/2C</math>
LC circuit magnetic potential energy <math>U_B=Q^2sin^2(\omega t + \phi)/2C</math>
RLC circuit ODE with respect to time <math>Lq + Rq' +C^{-1}q = \mathcal{E} </math>
RLC circuit charge <math>q = QeT^{-Rt/2L}cos(\omega't+\phi)</math>
resistive load <math>V_R=I_RR</math>
capacitive load <math>V_C = I_C X_C</math>
inductive load <math>V_L = I_L X_L</math>
resistive reactance <math>X_R = ?</math>
capacitive reactance <math>X_C = 1/\omega_d C</math>
inductive reactance <math>X_L = \omega_d L</math>
phase constant <math>tan\phi=X_L - X_C /R</math>
electromagnetic resonance <math>\omega_d = \omega = 1/\sqrt{LC}</math>
AC current <math>I_{rms}=I/\sqrt{2}</math>
AC voltage <math>V_{rms}=V/\sqrt{2}</math>
AC emf <math>\mathcal{E}_{rms}=\mathcal{E}_m/\sqrt{2}</math>
AC power <math>P_{avg}=\mathcal{E}I_{rms}cos\phi</math>

प्रकाश (Light)

electric light component <math>E = E_m sin(kx-\omega t)</math>
magnetic light component <math>B = B_m sin(kx-\omega t)</math>
speed of light <math>c = 1/\sqrt{\mu_0\epsilon_0} = E/B</math>
Poynting vector <math>\mathbf{S} = \mu_0^{-1}\mathbf{E}\times\mathbf{B}</math>
Poynting vector magnitude <math>S = EB/\mu_0 = E^2/c\mu_0</math>
rms electric field of light <math>E_{rms} = E/\sqrt{2}</math>
light intensity <math>I = E^2_{rms}/c\mu_0</math>
light intensity at the sphere <math>I = P_s/4\pi r^2</math>
radiation momentum with total absorption (inelastic) <math>\Delta p = \Delta U/c</math>
radiation momentum with total reflection (elastic) <math>\Delta p = 2 \Delta U/c</math>
radiation pressure with total absorption (inelastic) <math>p_r = I/c</math>
radiation pressure with total reflection (elastic) <math>p_r = 2I/c</math>
intensity from polarizing unpolarized light <math>I = I_0/2</math>
intensity from polarizing polarized light <math>I = I_0cos^2\theta</math>
index of refraction of substance f <math>n_f = c/v_f</math>
angle of reflection <math>\theta_1=\theta_2</math>
angle of refraction <math>n_1sin\theta_1 = n_2sin\theta_2</math>
angle of total reflection <math>\theta_c = sin^{-1}n_2/n_1</math>
angle of total polarisation <math>\theta_B = tan^{-1}n_2/n_1</math>
image distance in a plane mirror <math>d_i = -d_o</math>
image distance in a spherical mirror <math>n_1/d_o + n_2/d_i = (n_2 - n_1)/r</math>
spherical mirror focal length <math>f =r/2</math>
spherical mirror <math>1/d_o + 1/d_i = 1/f</math>
lateral magnification m and h negative when upside down <math>m=h_i/h_o = -d_i/d_o</math>
lens focal length <math>1/f = 1/d_o +1/d_i</math>
lens focal length from refraction indexes <math>1/f = (n_{lens}/n_{med}-1)(1/r_1 - 1/r_2)</math>
path length difference <math>\Delta L = d sin\theta</math>
double slit minima <math>d sin\theta = (N + 1/2)\lambda</math>
double slit maxima <math>d sin\theta = N\lambda</math>
double-slit interference intensity <math>I = 4I_0cos^2(\pi d sin\theta / \lambda)</math>
thin film in air minima <math>(N + 0/2)\lambda/n_2</math>
thin film in air maxima <math>2L = (N + 1/2)\lambda/n_2</math>
single-slit minima <math>a sin \theta = N\lambda</math>
single-slit intensity <math>I(\theta)=I_0(sin\alpha/\alpha)^2</math>
double slit intensity <math>I(\theta) = I_0(cos^2\Beta)(sin\alpha/\alpha)^2</math>
. . . <math>\alpha = \pi a sin\theta/\lambda</math>
circular aperture first minimum <math>sin\theta = 1.22\lambda/d</math>
Rayleigh's criterion <math>\theta_R = 1.22\lambda/d</math>
diffraction grating maxima lines <math>dsin\theta = N\lambda</math>
diffraction grating half-width <math>\Delta\theta_{hw} = \lambda/Ndcos\theta</math>
diffraction grating dispersion <math>D=N/d cos\theta</math>
diffraction grating resolving power <math>R=Nn</math>
diffraction grating lattice distance <math>d = N\lambda/2sin\theta</math>

विशिष्ट आपेक्षिकता (Special Relativity)

Lorentz factor <math>\gamma = 1/\sqrt{1-(v/c)^2}</math>
Lorentz transformation <math>t' = \gamma(t-xv/c^2)</math>
. . . <math>x'=\gamma(x-vt)</math>
. . . <math>y' = y</math>
. . . <math>z' = z</math>
time dilation <math>\Delta t = \gamma \Delta t_0</math>
length contraction <math>L = L_0/\gamma</math>
relativistic Doppler effect <math>f=f_0\sqrt{1-(v/c)/1+(v/c)}</math>
Doppler shift \Delta\lambda|c/\lambda_0</math>
momentum <math>\mathbf{p}=\gamma m\mathbf{v}</math>
rest energy <math>E_0 = mc^2</math>
total energy <math>E = E_0 + K = mc^2 + K = \gamma mc^2 = \sqrt{(pc)^2 + (mc^2)^2}</math>
Energy Removed <math>Q = -\Delta mc^2</math>
kinetic energy <math>K = E - mc^2 = \gamma mc^2 - mc^2 = mc^2(\gamma -1)</math>

कण भौतिकी (Particle Physics)

standard model see 4x4 chart of particles
Planck's constant <math>h</math>, in energy/frequency
Reduced Planck's constant <math>\hbar = h/2\pi</math>, in energy/frequency
Planck–Einstein equation <math>E = hf</math>
threshold frequency <math>f_0</math>
work function <math>\Phi = hf_0</math>
photoelectric kinetic energy <math>K_{max} = hf - \Phi</math>
photon momentum <math>p = hf/c = h/\lambda</math>
de Broglie wavelength <math>\lambda = h/p</math>
Schrodinger's equation <math>i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)</math>
Schrodinger's equation one dimensional motion <math>d^2\psi/dx^2 + 8\pi^2m[E-U(x)]\psi/h^2 = 0</math>
Schrodinger's equation free particle <math>d^2\psi/dx^2 + k^2\psi = 0</math>
Heisenberg's uncertainty principle <math>\Delta x \cdot \Delta p_x \ge \hbar </math>
infinite potential well <math>E_n = (hn/2L)^2/2m</math>
wavefunction of a trapped electron <math>\psi_n(x) = A sin(n\pi x/L)</math>, for positive int n
wavefunction probability density <math>p(x) = \psi^2_n(x)dx</math>
normalization <math>\int \psi^2_n(x)dx = 1</math>
hydrogen atom orbital energy <math>E_n = -me^4/8\epsilon_0^2h^2n^2 = 13.61eV/n^2</math>, for positive int n
hydrogen atom spectrum <math>1/\lambda = R(1/n^2_{low} - 1/n^2_{high})</math>
hydrogen atom radial probability density <math>P(r) = 4r^2/a^3e^{2r/a}</math>
spin projection quantum number <math>m_s \in \{-1/2,+1/2\}</math>
orbital magnetic dipole moment <math>\mathbf{\mu}_{orb} = -e\mathbf{L}/2m</math>
orbital magnetic dipole moment components <math>\mathbf{\mu}_{orb,z} = -m_\mathcal{L}\mu_B</math>
spin magnetic dipole moment <math>\mathbf{\mu_s} = -e\mathbf{S}/m = gq\mathbf{S}/2m</math>
orbital magnetic dipole moment <math>\mathbf{\mu}_{orb}=-e\mathbf{L}_{orb}/2m</math>
spin magnetic dipole moment potential <math>U = -\mathbf{\mu}_s\cdot\mathbf{B}_{ext} = -\mu_{s,z}B_{ext}</math>
orbital magnetic dipole moment potential <math>U = -\mathbf{\mu}_{orb}\cdot\mathbf{B}_{ext} = -\mu_{orb,z}B_{ext}</math>
Bohr magneton <math>\mu_B = e\hbar/2m</math>
angular momentum components <math>L_z = m\mathcal{L}\hbar</math>
spin angular momentum magnitude <math>S = \hbar\sqrt{s(s+1)}</math>
cutoff wavelength <math>\lambda_{min} = hc/K_0</math>
density of states <math>N(E) = 8\sqrt{2}\pi m^{3/2}E^{1/2}/h^3</math>
occupancy probability <math>P(E) = 1/(e^{(E-E_F)/kT}+1)</math>
Fermi energy <math>E_F = (3/16\sqrt{2}\pi)^{2/3}h^2n^{2/3}m</math>
mass number <math>A = Z+N</math>
nuclear radius <math>r=r_0A^{1/3}, r_0 \approx 1.2fm</math>
mass excess <math>\Delta = M - A</math>
radioactive decay <math>N = N_0e^{-\lambda t}</math>
Hubble constant <math>H = 71.0km/s</math>
Hubble's law <math>v=Hr</math>
conservation of lepton number <math></math>
conservation of baryon number <math></math>
conservation of strangeness <math></math>
eightfold way <math></math>
weak force <math></math>
strong force <math>

\begin{align} \mathcal{L}_\mathrm{QCD} & = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\ & = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m)\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \, \\ \end{align} </math>

Noether's theorem <math></math>
Electroweak interaction :<math>\mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.</math>
<math>\mathcal{L}_g = -\frac{1}{4}W_a^{\mu\nu}W_{\mu\nu}^a - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}</math>
<math>\mathcal{L}_f = \overline{Q}_i iD\!\!\!\!/\; Q_i+ \overline{u}_i^c iD\!\!\!\!/\; u^c_i+ \overline{d}_i^c iD\!\!\!\!/\; d^c_i+ \overline{L}_i iD\!\!\!\!/\; L_i+ \overline{e}^c_i iD\!\!\!\!/\; e^c_i </math>
<math>\mathcal{L}_h = |D_\mu h|^2 - \lambda \left(|h|^2 - \frac{v^2}{2}\right)^2</math>
<math>\mathcal{L}_y = - y_{u\, ij} \epsilon^{ab} \,h_b^\dagger\, \overline{Q}_{ia} u_j^c - y_{d\, ij}\, h\, \overline{Q}_i d^c_j - y_{e\,ij} \,h\, \overline{L}_i e^c_j + h.c.</math>
Quantum electrodynamics :<math>\mathcal{L}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,</math>

क्वांटम यांत्रिकी (Quantum Mechanics)

Postulate 1: State of a system A system is completely specified at any one time by a Hilbert space vector.
Postulate 2: Observables of a system A measurable quantity corresponds to an operator with eigenvectors spanning the space.
Postulate 3: Observation of a system Measuring a system applies the observable's operator to the system and the system collapses into the observed eigenvector.
Postulate 4: Probabilistic result of measurement The probability of observing an eigenvector is derived from the square of its wavefunction.
Postulate 5: Time evolution of a system The way the wavefunction evolves over time is determined by Shrodinger's equation.

इन्हें भी देखें

भौतिकी में प्रायः प्रयुक्त चर

सन्दर्भ

बाहरी कड़ियाँ